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Abstract. An approximate (linearised) Riemann solver is presented for the solution of the Euler equations of gas 
dynamics for axially symmetric flows. The method is Roe's flux difference splitting with a technique for dealing 
with source terms and incorporates operator splitting. Results for the problem of a converging spherical shock 
are presented. 

1. Introduction 

The (linearised) approximate Riemann solver of Roe [1] and extensions given by Glaister [2] 
have been highly successful in applications to problems governed by the "one-dimensional" 
Euler equations with slab, cylindrical or spherical symmetry~ In the present paper we seek 
to extend these techniques to the "two-dimensional" Euler equations with axial symmetry, 
incorporating the technique of operator splitting. The resulting scheme is applied to a 
strongly shocked axially symmetric flow. 

In Sec. 2 we give the differential equations for the axially symmetric flow of  an inviscid 
perfect gas and describe the details of the flux difference splitting scheme for the approximate 
solution of these equations. In Sec. 3 we describe a test problem with axial symmetry and 
display the numerical results achieved for this problem using the scheme of Sec. 2. 

2. Flux difference splitting 

In this section we consider a finite difference approximation for the solution of the Euler 
equations of gas dynamics with axial symmetry. 

The Euler equations governing axially symmetric flow of a compressible inviscid fluid may 
be written in the form 

Qu 1 / /~u2 ~ouv = 

v / qv2 -t- -R ~ Rquv -t- 

\ Ru(e -t-p) R v(e + p) 

(2.1) 
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P e - + �89 2 + v2), (2.2) 
~ - - 1  

w h e r e  Q = o(R, z, t), u = u(R, z, t), v = v(R, z, t), p = p(R, z, t) and e = e(R, z, t) rep- 
resent the density, velocity in the R, z coordinate  directions, pressure and total energy, 
respectively, at a general posit ion (R, z) and time t. The radial coordinate R is given by 
R = x/r~ - + yZ where (x, y, z) are Cartesian coordinates.  The fluid is assumed to be ideal 
with a ratio of  specific heat capacities ~. 

We begin by rewriting equat ions (2.1) in the form 

(Rw), + (Rf(w)) R + (Rg(w))z = r(w) (2.3) 

where 

w 

f(w) 

g(w) 

and 

= (0, Qu, or, e)r,- 

= (Ou, p + Qu 2, Quv, u(e + p))r, 

= (or,  Quv, p + Qv z, v (e  + p))r 

(2.4a) 

(2.4b) 

(2.4c) 

(N.B. The reason that we leave the term p(O/OR)(R) in equat ion (2.4d) will become apparent  
later.) 

If  we define a new variable W = Rw and notice that  Rf(w) = f (Rw)  = F(W),  then 
equat ion (2.3) can be written as 

w, + F ( W ) .  + a ( W ) z  

where 

W =  

F ( W )  = 

G ( W )  = 

r ( w )  = 

= r(w) (2.5) 

(~,  ~U,  ~V,  E) T, (2.6a) 

(~lV, P + ~ U  z, ~ U V ,  U(E + p))r ,  (2.6b) 

(~lV, ~IUV, P + ~IV ~, V(E + p))r, (2.6c) 

0, p ~ (R), 0, 0 (2.6d) 

0 )r .  
r(w) = O, p ~-~ (R), O, 0 (2.4d) 
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E - + �89 2 + V2). (2.6e) 

7 - 1  

This gives rise to new "conserved" variables ~ ,  M, N, E where ~ = RQ, M = Rm, 
N = Rn and E = Re. (Here m, n denote the components of  the momentum in the increasing 
R- and z-directions, respectively.) It also gives a new "pressure" variable P = Rp. Quantities 
with dimension of  velocity are unaltered, e.g., the components of velocity u = U, v = V, 
sound speed a = ~ = ~x/~/~ and enthalpy h = (e +p) /Q = (E + P)/Yl = H. In 
particular the matrices A = OF(W)/O W, B = OG(W)/O W involve only velocities and are 
the same as Of(w)/3w, Og(w)/aw, respectively. 

We now consider solving equations (2.5)-(2.6e) using the technique of operator splitting. 
In particular, we propose solving 

W t + F(W)R = r(w) (2.7) 

on an R-coordinate line, z = z0, and solving 

+ G(W)z  = 0 (2.8) 

on a z-coordinate line, R = R 0. (We have associated the term r(w) with (2.7) because the 
only non-zero component p(a/OR)(R) represents a change in the direction R increasing.) We 
now propose a finite difference algorithm for the solution of equations (2.7) or (2.8) by 
noticing the similarity to the Cartesian case (i.e., equation (2.8) with R = constant). 

We begin by considering equation (2.7). Consider a fixed grid in space and time with grid 
sizes AR, At, respectively, and label the points on an R-coordinate line so that 
Rj = Rj_~ + AR, and on the t-axis t. = t._~ + At. Let W/", ~ denote approximations to 
W(Rj, z o, t.), w(Rj, Zo, t.), respectively. We also use the notation that on an R-coordinate 
line the coordinate z takes the constant value z0. 

Using the relationship W(Rj, Zo, t.) = Rw(Rj, Zo, t.), we may write 

Wj" = / ~ ,  (2.9) 

where /~ represents an average value of  R. Assuming that at any time t, = nAt, W 7 
represents a piecewise constant approximation to W(Rj, z o, t,) in the interval 
(Rj - AR/2, Rj + AR/2) (as in the usual Godunov approach), R is given by the integral 

# = 1 fR;+aR/2 AR JR~-aR/2 R dR = Rj, (2.10) 

i.e. 

w? = Rj . (2.11) 
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We can then recover the approximation ~ to w(Rj, z0, t,) at time t = t. from equation 
(2.11), i.e., 

= w T i R  j ,  (2.12) 

Consider the interval [Ri_~, Rj] arid denote by Wj_~, W~. the approximations to W at 
Rj_~, Rj, respectively. We now rewrite equation (2.7) as 

dr(w) 
W, + oT WR = r(w) (2.13) 

and solve the associated one-dimensional Riemann problem 

W t + X(Wj_ , ,  W j ) W  R = r(w) (2.14) 

with data Wj_~, W; at either side of the point Rj_,/2, linearising A in the form .4(W;_~, W;) 
which is then taken to be a constant matrix. We shall use the approximate form of equation 
(2.14), 

Wjn+l D Wjn 

At 

( ~  w,_,) + ~ ( ~  ,, wj) 
- AR 

= ~(w") (2.15) 

where ,4(Wj_t, Wj) is the Roe matrix (2.17) (see [1]), f is an approximation to r and J may 
be j -  1 or j .  The Roe matrix X(Wj_z, Wj) is an approximation to the Jacobian 
A = OF(W)/Ow and because of  the remarks following equation (2.6e) it can be seen that 

A(Wj_,, Wj) = ,4(wj_ l, wj) (2.16) 

where ,4(wj_ 1, wj) is an approximation to Of(w)/Ow. The Roe matrix is constructed so that 

s - s  = 2 ( , , , , _ , ,  w, ) (w,  - w ,_ , )  

for any finite change of  state and is given [1] by 

2 

0 1 0 0 

O ' -  1 ) Q E  02 (3 - - 7 ) 0  - 0 ' -  1)I~ 7 -  1 
2 

_0~7 ~7 0 o 

(~- l) o(~ - OR B-(v- l)U ~ -(~-I)0~ ~0 
2 

(2.7) 

where Y denotes a square-root mean of left and right states of Y, namely, 

(2.18) 
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for all variables other than ~ and Q, and 

02 = 02 + I22. (2.19) 

In later analysis we shall also need mean values for ~ and Q, given by 

= , / ~ j - , ~ j ,  ~ = , /e j_,0j .  (2.20) 

The eigenvalues of  .g are 

~ = O +  a, ~[2 R = 0 - -  fi, ~[R3,, = O, (2 .21 )  

with corresponding eigenvectors 

= (1, 0 + a, 17,/~ + of)T, (2.22a) 

= (1, 0 -  ,~, 17,/~ - 0ff) r, (2.22b) 

= (1, 0, V, �89 r, (2.22c) 

= (0,  0,  ~7, ~72)T, 

where H is calculated using equation (2.18), and the mean sound speed fi is calculated from 

fi2 = (7 - 1)(/~ - �89 (2.23) 

Using the above properties of  A we can write equation (2.14) as 

w,"+' - w," + ~ - 6 - ,  
= r n) (2.24) 

At AR 

where ~(w") is a suitable approximation to the term r(w) on the fight-hand side of equation 
(2.14). We thus obtain 

W j  n + l  - W j  n ~-- At ~ 0 r  At ~-~ (Fj - Fj_,). (2.25) 

In the Cartesian ease the procedure [1] is to project Af  = fj -- ~_~ onto the eigenvectors 
of.4. Each projection represents the contribution of one wave system to Af. Here we follow 
a suggestion of  Roe [3] for the one-dimensional case of  duct flow, and find projections both 
of  AF = Fj - Fj_~ and also r Specifically, we write 

4 

AW = W j -  Wj_, = ~ ~ (2.26) 
i=1  
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so that 

4 
Ar  = ~ - ~ _ ,  = Z L ~ , ~ ,  �9 

i = 1  

Since .~ has eigenvalues ~ with corresponding eigenvectors ~ ,  and 

1 4 

~(~) - A R  ,=E L ~ /  

we may rewrite equations (2.25) as 

At ~ ~ 
Wjn+t = Wjn - -  A-R i=1 

where 

7,"= 

(2.27) 

(2.28) 

(2.29) 

a n d J m a y b e j -  1 or j .  
A similar analysis follows for updating along a z-coordinate line, R = R0. In that case 

equation (2.9) becomes 

Wk" = R ~  (2.31) 

where W~", wT, represent approximations to W(Ro, Zk, t.), w(R o, Zk, t.), respectively, and 

1 p +Az/2 
/~ - Az Jz,-A~/2 R~ dz = R0 (2.32) 

(Az represents the mesh spacing in the z-direction). Moreover, since equation (2.8) has a zero 
right-hand side, the corresponding expression to equation (2.29) in this case is 

W/~ +1 : W ;  - A z  ~i~i~ii ( 2 . 3 3 )  
i=1 

where ~z 2i, ~ take similar forms to those given by equations (2.21)-(2.22d) and ~i satisfy 

4 
-- - = 2i ~i~//- (2.34) t;k a k l  Z -z-z" 

i=1 

To update W" to W "+1 we apply a sequence of one-dimensional calculations along 
computational grid lines in the R and z directions in turn. The algorithm along any 
coordinate line uses first-order upwind differencing. In particular, along an R-coordinate line 
we add - ( A t / A R ) ~ R ~  to Wj" when ~ > 0 or add --(At/AR)~iR~iR~ to W#i_1 when 
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Fig. l(a). Schematic representation of the first-order algorithm in the R-direction. 

At ?z~z~z At 7z~z~z 
Ai~ie i ~ Az - ~ Ai~iei 

Zj_ I z . z . 3 zJ -I 3 

V. < o V. > o 
1 1 

i = 1,2,3,4 

Fig. l(b). Schematic representation of the first-order algorithm in the z-direction. 

~ < 0 for each cell [Rj_1, Rj] (see Fig. l(a)). A similar procedure is implemented along a 
z-coordinate line (see Fig. l(b)). 

If we follow through the algebra, we obtain the following expressions for R~, ~ in 
equation (2.29): 

1 
~ = ~-~ (AP + ~hAU), (2.3Sa) 

1 
~f = ~a ~ ( a e  - ~ a a U ) ,  (2.35b) 

AP 
~f = a ~ -  a--- ~ ,  (2.35c) 
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~f = -~ AV, (2.35d) 
V 

a n f 2  
~ = ~ (fi + (7 - -  1)U), (2.36a) 

~ f  = ARf2 (fi - -  (7 - -  1 ) U ) ,  (2.36b) 
2t] 2 

AR/2 
~ = 42 ( y -  1)U, (2.36c) 

~ = 0, (2.36d) 

where A(-)  = (-)j  - ( ' ) j_  1. Similar expressions hold for ~ ,  and we have already noted 
that ~," = 0. The coefficients ~[~ have been determined by setting 

(i) 1 ~, ~ = (2.37) 
AR ' i = l  

and choosing a suitable approximation f2 to the term r 2 = p a(R)/OR of equation (2.6d). We 
write r 2 = (0a2/7) a(R)/aR and approximate 

f2 = = - - ,  (2.38) 
7 AR 7 

where ~ = x/Qj_IQj as in the Cartesian case. Finally, we note that 

~/ ~j--I ~jj -- "~ (2.39) 

where/~ = ~ = ~ is averaged in the same way as O, ~ .  Therefore 

~ 2  
f 2 -  /~7 (2.40) 

and ~f  are given by 

~f = ~AR.~ (4 + (y -- 1)0),  (2.41a) 
27R 

~ A R  
~f = 27/~ ( 4 -  ( 7 -  1)tT), (2.41b) 
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(2.41c) 

~4 R = O. (2.41d) 

Summarising, we project the initial data w(R, z, O) onto a set of  piecewise-constant states 
= Rjw(Rj ,  z k, O) on the rectangle 

(Rj -- AR/2,  Rj + AR/2) x (zk - Az/2, Zk + Az/2), 

march forward to a time m a t  using a time step At by sweeping m times in the R- and 
z-directions alternatively as described by equations (2.18)--(2.41d), and recover the approxi- 
mate solution using 

In addition to the first-order algorithm given here, we can calculate second-order correc- 
tions by transferring fractions of  the increments described in Figs. l(a)-(b) (see [4-6]). If we 
limit these transfers using a suitable flux limiter or B-function (see [4-6]), the scalar scheme 
will be second-order almost everywhere, oscillation-free, and will sharpen up certain features 
that would be smeared by using the first-order method only. 

In the next section we describe a test problem that can be used to test the algorithm of this 
section. 

3. Numerical results 

In this section we describe a test problem that can be used to test the algorithm of  Sec. 2 and 
display the numerical results obtained. 

This two-dimensional shock tube problem can be considered either in (x, y) or (R, z) 
geometry (see Glaister [7]). 

Consider the two-dimensional Euler equations with axial symmetry and the region 
(R, z) ~ [0, 1] x [0, 1] with rigid boundaries along R = 0, z = 0. We position a membrane 
along (R, z) where x / / ~  + z 2 = �89 and take initial data 

I (Q-'O'O'p-)  if ~ +  z 2 < �89 

( Q , u , v , p )  = ((o+,  O, O,p+) if x / C ~ + z  2 > � 8 9  

The solution to this problem has spherical symmetry and satisfies the corresponding "one- 
dimensional" Euler equations (see Ref. [7]). Thus we can see whether the solution remains 
symmetric: moreover, we can compare the results with those obtained using a "one- 
dimensional" algorithm for the Euler equations with spherical symmetry. 

Figures 2-5 refer to this problem and the two-dimensional results have been computed 
using the algorithm of See. 2. We have taken y = 1.4, a mesh with 50 x 50 grid points and 
a time step At = 0.004. For  each output time we draw 31 equally spaced contours at 
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Omin + (i/30)(Qmax - -  O m i n ) ,  i = 0, 1 . . . .  30, where 0min, Omax are the minimum and maximum 
densities throughout the flow, respectively. In addition, we plot the density along R = z and 
plot the solution to the corresponding one-dimensional spherical problem obtained using 
the algorithm of Glaister [2] with 50 and 800 points. The one-dimensional solution with 
800 points provides a good approximation to the exact solution, whereas the solution with 
50 points provides a comparison on similar grids. 

The initial discontinuity breaks up into a converging shock and contact discontinuity. The 
shock is reflected from R = z = 0 and interacts with the contact discontinuity. This results 
in a transmitted shock together with the contact discontinuity still converging. These features 
are apparent in Figs. 2, 3, 4, 5, respectively. For each figure we see that the two-dimensional 
solution obtained remains symmetrical and is comparable to the one-dimensional solution 
on a similar grid. Furthermore, the solution clearly models the high resolution obtained with 
800 points. All computations have been done using the second-order entropy satisfying 
scheme with the "superbee" limiter (see [6]). 

The c.p.u, time used to compute these results using an Amdahl V7 with a 50 x 50 mesh 
is as follows. The algorithm takes 1.2 c.p.u, seconds to compute one time step and 60 c.p.u. 
seconds to reach a real time of  0.2 using 50 time steps. 

Along the walls R = 0, z = 0 we apply reflecting boundary conditions. Specifically, along 
z = 0, we consider an image cell and impose equal density, pressure and tangential velocity 
(u in this case), and equal and opposite normal velocity (v in this case), at either end of  the 
cell. A similar argument applies for a reflecting boundary condition along R = 0. 

4. Conclusions 

We have proposed an algorithm for the Euler equations with axial symmetry which is an 
extension of  the schemes of  Roe [I] and Glaister [2], and incorporates the technique of 
operator splitting. The algorithm has been applied to the test problem of a converging 
spherical shock and has achieved satisfactory results. 
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